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In a laboratory plasma, particularly in a high-temperature plasma, impurities from the 
wails of the discharge chamber, diaphragms, etc., play an important role. Even a small 
fraction of impurity ions can considerably affect the radiation, the electrical conductance~ 
and other plasma parameters. It is therefore important to investigate the diffusion of 
impurities, and their time and spatial distributions [i, 2]. 

At high temperatures the atoms of impurity are multiply ionized, so that the problem re- 
duces to investigating transfer processes in a completely ionized multicomponent plasma, 
formed from electrons and several sorts of ions of arbitrary charge and mass. 

Classical diffusion in a plasma consisting of electrons and ions of two sorts has been 
considered in [3]. An analysis carried out on the basis of the quasihydrodynamic approxi- 
mation, i.e., neglecting the contribution of thermal forces in the equation of motion for the 
individual plasma components, has shown that when the ions diffuse transverse to a strong 
magnetic field ions with high charge should be concentrated in the high-density region of 
the plasma. A similar conclusion was reached independently in [4]. However, in these 
papers the effect on diffusion of the transverse temperature gradient was neglected, although 
the latter is always present under practical conditions. For the special case of a plasma 
with a small impurity density and when m I >> m i (m I and m i are the masses of the impurity ions 
and of the plasma ions, respectively) diffusion of impurities taking the temperature gradient 
into account was considered in [5] as it applies to the problem of the "wall" or "non- 
magnetic" trapping of a plasma. In [6] the longitudinal forces of friction and the heat flow 
in a plasma with two sorts of ions of arbitrary mass were calculated in connection with an 
analysis of the transfer of impurities in colloidal systems. Consideration of the thermal 
forces in this case enabled the effect of temperature screening of the impurities to be 
analyzed. 

In this paper we obtain a general system of equations for determining the diffusion 
velocities and heat flows in a multicomponent plasma with ions of arbitrary mass in arbitrary 
charge states. Grad's method [7] is used to solve the linearized Boltzmann equation. The 
transfer equations obtained in [8-10] in the Grad 13-moments approximation, does not give 
the required accuracy, so here, as in [6], we use the higher approximation corresponding in 
accuracy to the calculations carried out in [3] for a simple plasma. 

We calculate the particle and heat fluxes transverse to the magnetic field in a multi- 
component magnetized plasma, which enables us, in particular, to analyze completely the 
effect of temperature screening, and also the transverse transfer of heat in a plasma with 
several sorts of ions. When determining the longitudinal properties, the transfer is based 
on the possibility of summing over the charge states of ions of one sort, which considerably 
simplifies the calculation of the kinetic coefficients for this case. The expressions ob- 
tained, together with the coefficients calculated in Appendix 2 for a plasma with two sorts 
of ions, can be used to analyze the radial transfer of impurities (in particular, carbon, 
oxygen, tungsten, and iron impurities) in colloidal systems in the Pfirsh--SchlUter regime 
(see also [6, ii]). 

I, General System of Equations. To determine the diffusion velocities and heat flows in 
a multicomponent plasma we used Grad's method [7]. The distribution function is represented 
in this case in the form of an expansion in irreducible Hermite polynomials [12] 

(1) 
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the mean-mass velocity of the mixture, m s is the mass of the particles, and n~z and T~z are 
the density and temperature of the particles of sort ~ and charge z. In this expansion m 
represents the rank of the tensor, while n represents the degree of the polynomial. 

In the general case substitution of the expansion (i) into the kinetic equation leads, 
after integration over the velocity with weight Hmn, to a system of nonlinear differential 
equations for the coefficients a~ [7, 9]. The latter can be simplified considerably if we 
assume that the macroscopic parameters of the plasma vary only slightly at distances of the 
order of the effective mean free path and in a time of the order of the time between col- 
lisions between the plasma particles. When these conditions are satisfied we can neglect 
the derivatives of the coefficients amn and nonlinear terms on the left and right sides of 

~Z 
the equations. We finally arrive at a linear system of algebraic equations for amnaz [8-10] 

When considering diffusion and heat transfer we keep only terms with m = 1 in expansion 
(i). For a fairly accurate calculation of the transfer coefficients in a completely ionized 
plasma it is necessary to use not less than three terms [3]. In this case it is convenient 

~o a ~  and a ~ t o  t h e  moments  P~z w~z = Paz ( U ~ z - - U ) ,  to transfer from the coefficients a a z ,  ~z az 
haz --=qaz --5P=z w=z/2 and raz as given by the relations 

~/~ 4r  F a/2t ~o - w -~ /2 /  ~t 2ha=Ta~/Pa,  a12 

where U az  and q az  are the velocity and heat flux of particles of sort a and charge z, Paz = 
m~naz; P~z = n~zT~z; Yaz = ma/Taz- The equations for Waz , haz , and raz can then be written 
in the form 

- -  t o ~ o ~  [W~z X kl  + V P ~  - -  t%~ W-  - -  = G ( ~ ;  ( w ~  - -  w ~ 0  + 

~(4) h~= G(5) h~$ (2b)  

(2c) 

where Faz = X a @ ez(E+ [u • H]/c) , X a are forces of nonelectromagnetic origin, Waz = ezH/mac; 
~aB = mamB/(ma + m8); k =H/H. The index relates to the charged state of the ions of sort B. 

G (n) taking into account the relationship between the irreducible The quantities azB~' 

Hermite polynomials H ~k and the Sonin polynomials s(k)[12] a/2 

n = ( -  2? k! ( =" / 

can be expressed in terms of the known integral brackets of the Sonin polynomials [13, 14]. 
Calculation of the latter for a completely ionized plasma leads to the following results: 

~(2) , 3 ~(~) 3 W , 

- -  ( 1 3  m~ 8 3 mc~ --,(5) 27 

(3) 
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where 
•  = - m ~ m i ~ , ' ( m  ~ 4 - r a y " ;  W ~ z ~  : W~;~z  : n ~ z m j ~ z ~ ;  

- -  2 ~ 2  4 1 / 2  4 q//2~ ~13 ~z ~ e ,tt~f 3 L 

Here ~ is the Coulomb logarithm [3] which, due to the weak dependence on the parameters, is 
assumed to be approximately the same for all sorts of particles. 

Note that the right sides of the system of equations (2) was calculated assuming the 
temperatures of all the sorts of particles to be equal. Otherwise the equations become 
considerably more complicated (cf., e.g., [9], where the right sides of the equations for 
the velocities and thermal flux are calculated for arbitrary temperatures of the components). 
In fact, to preserve the form and values of the coefficients of system (2), strict equality 
of the temperatures is required, as well as satisfaction of the condition ITaz -- TB~I <<Taz- 
The approximate equality of the temperatures of the plasma components does not, however, 
impose any limitations on the temperature gradients. Hence, both in the initial system of 
equations (2) and in all the results obtained, unless otherwise stated, the temperatures of 
the components are assumed to be approximately equal, while the temperature gradients are 
arbitrary. 

The system of linear algebraic equations (2) with coefficients (3) enables one to de- 
termine the velocity of diffusion and the heat fluxes in a multicomponent completely ionized 
plasma for arbitrary values of ~T. In the special case of a two-component electron--ion 
plasma the solution of this system in the limit when me/mi <<i leads to the results obtained 
in [3] using the Chapman--Enskog method. For a multicomponent plasma consisting of electrons 
and ions of different sorts in different charged states, the general solution of system (2) 
for arbitrary ~T looks fairly complicated, which in practice eliminates the possibility of 
analyzing it. Hence, below we will consider solutions of Eqs. (2) in the limits when ~T >>i 
and ~ = O, which enables fairly simple expressions to be obtained for the diffusion velocities 
and heat flows in important practical cases: transverse heat flows and particles of arbitrary 
charge and mass in a magnetized plasma, longitudinal flows for electrons or light ions, and 
longitudinal flows for several sorts of heavy ions in arbitrary charged states. 

2. Diffusion and Heat Transfer Transverse to a Magnetic Field in a Magnetized Plasma. 
In a magnetized plasma (~T >>I, T -I is the collision frequency) the solution of Eqs. (2) for 
components perpendicular to the magnetic field can be obtained using an expansion with re- 
spect to the small parameter (~T) -~. In the zeroth approximation, completely neglecting 
collisions, we have 

(o) :~_ i , c / [k •  

h(O) 5 p ~  [k • VT~A, r~ ) O. 
o~:• ~ eHz :• = 

(4) 

The diffusion flows of particles and best appear in the first approximation with re- 
spect to (~)-i when Eqs. (4) are substituted into the right side of Eqs. (2). In this case 
it should be noted that consideration of the moment r~[) in the expansion, since in a magne- 
tized plasma r~2z = 0, does not lead to any refinements compared with the well-kno~m 13- 
moment approximation, corresponding to consideration of only the first two moments in ex- 
pansion (i). Hence, the results given below can be obtained directly from the general ex- 
pressions given in [9], in which the derivation of the transfer equations for a nonisothermal 
multisort plasma was considered in the 13-moment approximation. Note that in [9] the case 
of a strongly magnetized plasma was not analyzed separately. As regards [15, 16], based on 
other methods of solution, expressions are derived in them only for the diffusion velocities 



transverse to a strong magnetic field. It is therefore advisable to present the final 
expressions for the diffusion velocities and the heat flows which follow from system (2). 
Neglecting, for simplicity, nonelectromagnetic forces, we obtain 

! r ~ ~ , " ~ - I ~  ~.~ ml~z ~ d u =  

mc~o~ ~ I" " - -  : .2 dt \ ; (5) 

= 7 ,  - T - V  I i  T_.o - - - -  - + 
" L n ~ : z  ,,l~Z~ ( 6 )  

For convenience we have carried out the summation over the charged states of the ions 
in Eqs. (5) and (6), so that the sums in these expressions can only be extended to particles 
with different masses. In the summation we introduced the following notation: 

7. Z. Z 

T~ p~ln~, -~UO = = Z ( v r  ( ~  v TD ,  
7. 

2 ~ o  2 /  2 2 

We will also present an expression for the transverse component of the force of friction 
of particles of the ~-sort 

where w~=~ .~n~zz2w~z /n~z~  . The summation in  ( 7 ) ,  as in  Eqs. (5) and (6 ) ,  can on ly  be extended 

to d i f f e r e n t  s o r t s  of  p a r t i c l e s .  

For i l l u s t r a t i o n  we w i l l  c o n s i d e r  some consequences of  Eqs. (5) and (6 ) .  We w i l l  de-  
te rm ine  the equilibrium (equilibrium established after a time that is less than the character- 
istic electron diffusion time [3]) concentration of impurity ions in a plasma consisting of 
electrons, basic singly charged ions i and ions of sort I with arbitrary charges z. The 
equations for the equilibrium value n I in the cylindrically symmetrical case can be obtained 
from Eq. (5), by equating to zero the radial components of the flux (F I = ZnizWiz) and the 
current (JI = eZnIzWIz z) of the impurity ions. Neglecting collisions with electrons and the 
inertial terms, and also assuming z~ ~ z~, we have 

0~i 1 0 P i  t O(PfiI) 3 ( t i ) OT 
O'--r = O, n i 8r nsz~ Or 2 ~iI m i ml ~ ~r = O. (8) 

An important consequence of these equations is the fact that equilibrium is reached only when 
zI = const, i.e., in those regions where the impurity ions are ionized up to the maximum 
charged state possible for the specified electron temperature. Otherwise, due to collisions 

�9 P ~ f ~ s  t ~ I  
between impurity ions of different charge there is a flux given by FI= 2x H ~s ~ where PHI = 

2T/mi~, directed in the direction in which zI increases.* In regions where zI = 

~The comparatively simple form of the expression for r I and the equilibrium conditions (8) is 
due to the assumption made above that z~ and z~ are approx_imately equal. In general these 
expressions turn out to be more complex, and when z~ and z~ differ appreciably, which occurs 
when there is a considerable spread in the values of the charges of ions of one sort, local- 
izedin a given region of space, the flux FI, in particular, may vanish. 
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const, the equilibrium impurity ion density has the form 

_ S~ ~I ?- iz (Um~--~I/mI)+TZ--~ 
ni = const n~ T (9) 

In the most typical case (mi~5mi) it follows from relation (9) that impurity ions will not 
collect in regions of maximum concentration if the density of the main plasma ions n i in- 

creases more slowly than T(ii+~)/~(Tf-0. For a plasma with ions of two sorts of different 
charge (z = i) Eq. (9) shows that light particles are concentrated in the region of maximum 
temperature. In particular, for a D-T-plasma, the densities of deuterium and tritium ions 
in equilibrium are related by the expression 

nr/rt  D ~-, T-3/lo,  

where it follows that the tritium ions are taken out to the periphery of the plasma filament. 

We will now determine the transverse ionic thermal conductivity of a plasma with one 
sort of impurity ions. Assuming, as in the previous example, that z i = i, mi >>m i and also 
assuming thatv• = v• we obtain from Eq. (6) 

2Pi nlz } [ n I m I 
X =  X I §  - 2 1 +  2 .3  + n-~. . 

coiTiim i (io) 

The coefficient (i0) io front of the square brackets is th~2thermal2/ conductivity of a plasma 
. . . .  (o) 

without impurities • , the term proportional to (mi/mi) is the correction due to the 
i 

thermal conductivity of the heavy ions, and the remaining term is the correction due to the 
thermal conductivity of the main ions of the plasma. It is more convenient to express the 

transverse thermal conductivity in terms of Zef f = ~n~z~/ne: 

X : X{o){i + (Zef f -  l ) [2 .3  + (m,/m~)'12(Zeff--- 1)/~]}.  ( i l )  

Here we have used the inequality Zeff<<~l, which usually holds when ~i>>i. If we ignore 
the correction proportional to (mI/mi) ~/~, Eq. (ii) can be immediately generalized to the 
case of a plasma with an arbitrary number of impurity ions. If, e.g., in such a plasma 
Zef f = 4, the transverse ionic thermal conductivity increases by a factor of approximately 8. 

3. Determination of the Longitudinal Friction Forces and Heat Fluxes: The longitudinal 
heat fluxes and friction forces can be obtained from Eqs. (2), if we put ~z = 0. In this 
case, only the last two equations will in fact remain, while the first serves merely to de- 
termine the force of friction in terms of the velocity and temperature gradient of the 
components. This quite complex system describes diffusion and heat transfer in a plasma with 
particles of arbitrary mass. However, in actual plasma, the masses of many of its components 
are related to one another by definite relations. In particular, we can always separate 
components whose particle masses are considerably less than the masses of the remaining 
particles. In addition, the masses of ions of one sort but with different ionization multi- 
plicity are equal. The latter fact, as shown in Appendix i, enables one to calculate the 
longitudinal components in two states: We first determine the mean values of the quantities 
for particles of one sort, and we then obtain the difference between the partial and average 
values. Using this method the general solution of Eqs. (2) for the longitudinal components 
of the force of friction and the heat flux can be represented in the form 

" r (I) ] .2 
(12) 
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(13) 

--I ~ --I . x 

where z~ = .~ 'ce~  . The n u m e r i c a l  c o e f f i c i e n t s  c ~  ) in  Eqs. (12) and ( i3)  a r e  found from the  
s o l u t i o n  of  t h e  s e t  of  e q u a t i o n s  f o r  the  mean v~/ lues ,  w h i l e  c (n)  i s  found from the  

[ 

for the difference between the partial and mean values. In this case c( n)~p and c~ n)equati~ re- 
lated by the  e q u a t i o n s  

The summation here, as in Eqs. (12) and (13), can only be extended to different sorts of 
particles. 

(n) n (n) Hence, the problem now reduces to finding the coefficients ca~ a d c a for components 
with different particle masses. The general expressions for these quantities are quite 
complicated, but for light particles (at least one sort of such particles (electrons) is 
always present in a plasma) an explicit form of the coefficients can be obtained using an 
expansion with respect to the small parameter mk/m a (the index k relates to the light parti- 
cles). In the zeroth approximation with respect to mk/m a the set of equations (2) splits 
into two independent equations: for the light component and for the heavy components with 
m~>>m k (cf., e.g., [3, ii], where this method was used). Solution of the first of these 
leads to the following values of the coefficients c(~) and c(n) for light particles: 

* (2) c(k 5) "(~)~-/~k~ ck~ (') = ( t - 6 0 . 2 4 z ~ ) ( t  §  ch~=- O, - - ~ h o ~ .  = 
* * ~__ * 

= 2,2z k (1 ~-, O,52zk)/Ah, ~ah *(~) ---- 1.56 (1 -~ t,4tz~) (1 -~- O . o 2 z h ) / A  k,. (14) 
c(s)  (6) (s) Z * * 

where Ak = (i + 2.65z~)(i + 0.285z~); z~ = ~n=z=/nhzh, The summation here is carried out over all 

the sorts of particles a for which m a >>m k. In deriving the coefficients (14) we assumed 
that in the majority of cases the light particles are those particles with only one possible 

that c~ ) and c~ n) occur in (12) and (13) in only certain combinations. charged state, SO 

Note that, as shown in [8-10], if the condition Tk/mk>>T/m a is satisfied, the separation 
of the equations for the light particles is also possible when their temperature differs 
from the temperature of the remaining components. In this case, it is necessary to use 
their inherent temperature in the coefficients of the expressions for the force of friction 
(12) and the heat flux (13) of light particles. 

The coefficients c~) and c~ n) for the heavy particles are determined from (2) written 
without the light component. The effect of the latter reduces only to taking into account 
the force of friction of the heavy particles on the light particles [17]. In fact, in 
addition to the addition of new terms in Eqs. (12) and (13), connected with the light compo- 
nents, this also leads to a small change in 

o~ = C(,~T t.77 (1 0.3z~) 

where c(~ )T is the coefficient calculated without taking the light component into account. a~ 

Obviously if after separating the equations for the lightest of the components in the 
plasma there is again a component for which mi<<ma, where a # i, k (e.g., protons in a 
plasma with heavy impurities), the procedure for separating the equations from the system of 
equations (12) can be extended. In this case the coefficients in Eqs. (12) and (13) for the 
force of friction and the heat flux of the component will again be determined by Eqs. (]4). 

(n) (n) The coefficients cab and c for the heavy components and masses that are not too 
different, retaining in ~he result of the last separations all the light components, should 
of course be expressed in terms of the ratio of the corresponding determinants. But this 
hardly makes sense since the calculation of the determinants themselves in the case of 



arbitrary masses turns out to be extremely complicated even for two sorts of particles. Hence~ 
it is best to make a numerical calculation of these quantities. Such a calculation was 
carried out for two heavy components. The equations for the approximate calculations of the 
coefficients c(9) and c(n) for several mass ratios corresponding to any pair of the set of 
impurities carZon, oxygen, iron, and tungsten, are presented in Appendix 2. 

In [6] expressions for the longitudinal friction forces and heat fluxes obtained for 
the special case of a plasma with two sorts of ions were used to analyze the radial particle 
and heat transfer transverse to the magnetic surface in colloidal systems in the Pfirsh-- 
Schl~ter regime. In [ii], expressionsobtained for a multicomponent plasma with a large mass 
ratio of the ions were used for the same purpose. The expressions obtained in the present 
paper enable one to analyze the diffusion and heat transfer in the Pfirsh--SchlNter regime for 
a multicomponent plasma with impurities of arbitrary mass in arbitrary charged states. 

Appendix i. Summation of Eqs. (2) over the charged states when determining the longi- 
tudinal transfer properties is possible due to the following property of the coefficients of 
the equations: 

" z,~ ocz~. 

Using these relations, Eqs. (2b) and (2c) in the case of interest (maz = 0) can be written, 
after summation over 5, in the form 

(AI) 

where ~va ---- E Iu~wa:; h~=paEfazha:/p~; 
Z 7. 

ra:p~I~:r~zlp~z are the mean values of the quan- 
z 

tities Waz, haz , raz for particles of the sort a. 

Summing Eqs. (AI) over z, we arrive at the following set of equations: 

~ 5 P ~  ~ ( ~ )  . . . .  

t 
- ' - o =  << G ) =  v - < t  ' 

(A2) 

Equations (A2) are similar to the last two equations of system (2), but the number of 
equations is considerably less here. Formal solution of this equation enables one to ex- 
press ~a and ha in terms of wa and ~ T~, and after substituting these quantities into the 
right side of Eq. (2a) one can deterV~ine the values of the constant c~). The calculation 
of the mean values of r~ and ~a is not, however, a complete solution o~ the problem, since 
to describe the behavior of the plasma it is necessary toknow the diffusion and heat transfer 
for each of the charged states of the ion. In order to calculate these quantities we will 
divide Eqs. (AI) into I~z and subtract them term by term from the corresponding equations of 
system (A2). As a result we have 

( ) ,- 

- ) o=:(w~_w~.)S~)_~7(  ~ h~:~S:6) , (~  ,~ m~r 
(A3) 
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TABLE i 

C-O Fe--W O--Fe C--Fe O-W .C-W 

m~/,~ l 0,750 0,304 0,286 0,2t4 0,087 0,065 

Pz. 0,74 0,63 0,63 0,63 . 0,62 0,62 
c(, i) P~ 0,09 0,tt 0,tl O,iO 0,09 0,09 tl 

P3 0,86 0,53 0,53 0,49 0,45 0,45 

Pa 0,77 0~55 0,54 0,48 0,38 0,36 
c~ ) P2 0,10 0,27 0,27 0,29 0,30 0~31 

I:' a 0,87 0,63 0,62 0,57 0,50 0,49 

P1 0,84 0,84 0,84 0,84 0,84 0,84 
c~  P~ 0,t2 0,3~ 0,36 0,38 0,33 0,31 

Pa 0,88 0,65 0,63 0,58 0,49 0,48 

p~ 0,51 0,38 0,38 0,40 0,47 0,49 
c~ ) ?~ 0,07 0,1t 0,t0 0,06 0,01 0,01 

Pa 0,92 0,55 0,51 0,32 030 0,10 

P1 0,37 --0,07 --0,08 --0,12 --0, t t  --0,09 
c~ ) p~ 0,07 0,27 0,27 0,27 0,t8 0,t4 

P3 t,00 t,t6 t,15 1,t5 1,t2 t,10 

Pl 0,75 1,t4 t,16 t,23 t,29 1,29 
c(l 2) P2 0,04 0,02 0,02 0,01 0,00 0,00 

P3 0,80 0,t0 0,t0 0,08 0,00 0,00 

Pz 0,59 0,58 0,59 0,59 0,58 0,58 
c(2r ) p~ 0,04 --0,t2 --0,45 --0,30 --0,32 --0,3i 

Pa 0,86 t3,00 8,00 2,90 1,40 t,20 

P1 
c~ 5) p~ 

Pa 

Pz 
c(/5) P~ 

P3 

Pz 
g~.) P, 

P~ 

Pl 
c(3) Ps il 

Pa 

P1 

P3 

P1 
c(/6) P,2 

Pa 

P1 
c (~ P~ 

Pa 

0,75 
--0,t7 

1,09 

0,59 
--0,i5 

t,09 

1,54 
--0,3t 

1,28 

t,35 
--0,28 

t ,26 

i,29 
--0,30 

t ,25 

3,17 
--0,64 

i36  

2,61 
--0,53 

t,i5 

t,i7 
--0,78 

t,36 

0,58 
--0,52 

t,26 

2,57 
--4,00 

3,10 

0,64 
--0,17 
1,43 

1,29 
-- t ,67 

2,02 

5,32 
--5,05 

t ,87 

2,6t 
--2,i3 

1,63 

i ,t9 
--0,82 

t,37 

0,58 
--0,53 

t ,25 

2,69 
--4,65 

3,29 

0,56 
--0,07 

0,90 

i,29 
--i,74 

2,05 

5,49 
--5,53 

i ,93 

2,61 
--2,21 

t,65 

i,26 
--0,95 

t ,43 

0,58 
--0,56 

t,2t 

3,41 
--8,80 

4,t0 

0,20 
t,20 
6,00 

1,29 
--2,02 

2,16 

6,30 
--8,11 

2,20 

2,6i 
--2,47 

i ,70 

t,37 
--I,19 

t,56 

0,57 
--0,50 

0,95 

6,79 
--38,00 

6,80 

--0,50 
4,00 
6,00 

t,27 
--2,10 

2,00 

8,85 
--19,10 

3,t0 

2,60 
--2,51 

1,53 

t,39 
--1,26 

1,59 

0,57 
i --0,46 
i o,86 

8,00 
--52,00 

7,64 

--0,55 
4,50 
6,60 

1,28 
--1,96 

1,84 

9,55 
--23,00 

3,3t 

2,60 
--2,36 

1,4i 

solution of Eqs. (A3) 

where 

for h~/Pa --haz/P~z can be written in the form 

( z2 

c(5) 5 3~ ) ~a= c~ ) = r162 #a)~(o �9 ~a ~ ~ ~ D~ .~(4).q(s) '7 (s 

(A4) 
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The solution of (A3) in the form (A4) together with the solution of the system of 
equations (A2) forh~ leads as a result to Eq. (13). Substituting the solutions of these 
equations into Eq. (2a) we can represent R~z in the form (12) where the coefficient c (4) is 
given by the expression 

2 [{~(2)~(8)9~(~)S(a)~(6) (~) ~ (6) 

Appendix 2. The coefficients c(~) and c (n) in the case of two heavy components are most 
conveniently calculated from the approximate equation 

c = PL -q- Pe/(Zi~ + P3), 

2 2 
where  Z i i  = n i z i / n i z  i .  The i n d e x  I c o r r e s p o n d s  to  t h e  h e a v i e s t  component  o f  t h e  p l a s m a .  
The v a l u e s  o f  t h e  c o n s t a n t s  Pn f o r  d e t e r m i n i n g  e (~ )  and c ( n )  in  a p l a s m a  c o n s i s t i n g  o f  two 
s o r t s  o f  i m p u r i t y  i o n s  (any  p a i r  f rom t h e  s e t  c a r ~ o n ,  o x y g e n ,  i r o n ,  and t u n g s t e n )  a r e  g i v e n  
in Table i. The error that arises from the use of the approximate formula in the majority 
of cases does not exceed 2-3%. 
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